
The Business of Software

Phillip G. Armour

The Five Orders of Ignorance
Viewing software development as knowledge acquisition and
ignorance reduction.

PA
U

L
ZW

O
LA

K

In my first column (Aug. 2000,
p. 19), I argued that software is
not a product, but rather a

medium for the storage of knowl-
edge. In fact, it is the fifth such
medium that has existed since the
beginning of time. The other
knowledge storage media being, in
historical order: DNA, brains,
hardware, and books. The reason
software has become the
storage medium of
choice is that knowledge
in software has been
made active. It has
escaped the confine-
ment and volatility of
knowledge in brains; it
avoids the passivity of
knowledge in books; it
has the flexibility and
speed of change missing
from knowledge in
DNA or hardware.

If software is not a
product, then what is
the product of our
efforts to produce soft-
ware? It is the knowl-
edge contained in the
software. It’s rather easy
to produce software. It’s
much more difficult to
produce software that
works, because we have
to understand the
meaning of “works.” It’s
easy to produce simple

software because it doesn’t contain
much knowledge. Software is eas-
ier to produce using an application
generator, because much of the
knowledge is already stored in the
application generator. Software is
easy to produce if I’ve already pro-
duced this type of system before,
because I have already obtained the
necessary knowledge.

So, the hard part of building
systems is not building them, it’s
knowing what to build—it’s in
acquiring the necessary knowledge.
This leads us to another observa-
tion: if software is not a product
but a medium for storing knowl-
edge, then software development is
not a product-producing activity, it
is a knowledge-acquiring activity.

Hacking
It is quite easy to show that
software development is a
knowledge-acquisition activ-
ity using a slightly exagger-
ated example. Imagine a
hacking project. With hack-
ing, there is no real attempt
to acquire the knowledge
first, the project just hacks
code. As the code is written
and executed (testing may be
too strong a word), there
comes a point where validity
of the knowledge in the code
is checked somehow. This
accomplishes two things: it
identifies what in the code is
“correct” (the knowledge) and
what in the code is “incor-
rect” (what I call “unknowl-
edge”). This unknowledge is
often—somewhat incor-
rectly—considered to be
defects. From a knowledge
perspective, “unknowledge” is
still knowledge; it just doesn’t

COMMUNICATIONS OF THE ACM October 2000/Vol. 43, No. 10 17

apply to this particular system.
Coding continues by stripping

out the “unknowledge” code and
building on the “knowledge” code.
This continues until the next vali-
dation point. This whole activity
repeats until the system is built.
Note that the activity of coding is
simply the mechanism that is
being used to capture the knowl-
edge (and unknowledge). Most
time is actually spent in deriving
these two forms of knowledge, and
then identifying and separating
them.

At the end of this hacking activ-
ity, having written a lot of code,
we are left mostly with “knowl-
edge” code. One could legitimately
argue that if this system can suc-
cessfully pass all tests we can throw
at it, it does, ipso facto, contain all
the necessary knowledge. However,
there are a few further observations
we can make:

• Unless great care is taken to
remove all traces of the “unknowl-
edge” from the code, some legacy
will remain. That is, the program
will be contaminated by the foot-
prints of the “unknowledge.”
These footprints will be extra
states, switches, declarations,
loops, and so forth, that sup-
ported the incorrect assumptions,
but were not fully removed. The
code may work, but it’s not
“good” code. So, while the final
product does contain the neces-
sary knowledge, it also contains

the remains of the journey to find
that knowledge.
• While we are acquiring two dif-
ferent kinds of knowledge (what
works and what doesn’t), we are
only saving one kind. The “what
doesn’t” is simply thrown away.
• The hacking approach does not
work well if there is a significant
likelihood of later knowledge
invalidating earlier knowledge.
When this happens, there will be
enormous amounts of backtrack-
ing in order to rework the system.

The problem is that the final
product is contaminated with the
legacy of the process used to build
it. Perhaps the developer knows
this and understands what should
have been redesigned. But no one
else does, and in a year’s time, the
developer will have forgotten why
it looks the way it does. For this
reason, code is a write-only knowl-
edge store.

It’s evident from this example
that the real job is not writing the
code, or even building the sys-
tem—it is acquiring the necessary
knowledge to build the system.
When hacking, we use the activity
of building the system (or rather
attempting to build the system) as
our mechanism for understanding
what the system has to do. Code is
simply a by-product of this activ-
ity. The problem arises when we
think the code, rather than the
knowledge in the code, is the
product. Then we are tempted to

ship the code as is. What we
should do, of course, is rewrite the
code so it cleanly represents the
knowledge after the hacking stage. If
we have done a good job of cap-
turing what we have learned by
hacking the code, writing it again
should be straightforward and
rather quick. The act of doing this
intentionally is called prototyping.

As a development life-cycle
model, prototyping acknowledges
that our job is not to build a sys-
tem, but to acquire knowledge. We
don’t expect to get a functioning
system the first time out when
prototyping. What we do expect
to get is (some of) the knowledge
needed to build the system. And
we use prototyping particularly
when we don’t know in advance
what kind of knowledge we might
need or there is a likelihood of
later knowledge modifying earlier
knowledge.

So if our job is to acquire
knowledge, what can we assert
about the knowledge we must
gain? For everything we know, we
also have a certain amount of igno-
rance. Ignorance being simply the
other side of the knowledge coin.
If we view systems development as
the acquisition of knowledge, we
can also view it as the reduction or
elimination of ignorance. We
would hope that, at the end of the
project, we are less ignorant than
we are at the start. So what kinds
of ignorance might we exhibit?

The Five Orders of
Ignorance
Based upon what we know and
what we don’t know, we can clas-
sify our ignorance into strata or
layers. These I call the “Five
Orders of Ignorance.” They can be

The problem arises when we think the
code, rather than the knowledge in the
code, is the product.

18 October 2000/Vol. 43, No. 10 COMMUNICATIONS OF THE ACM

COMMUNICATIONS OF THE ACM October 2000/Vol. 43, No. 10 19

The Business of Software

helpful in understanding what is
needed to reduce our ignorance
and build a system that works.
They also help explain some of the
artifacts of the software develop-
ment environment, and some of
our behaviors working in this envi-
ronment.

Since we are computer folk, we
start counting from zero, rather
than one. And so we’ll apply this
to the Orders of Ignorance:

0th Order Ignorance (0OI)—
Lack of Ignorance. I have 0OI
when I know something and can
demonstrate my lack of ignorance
in some tangible form, such as by
building a system that satisfies the
user. 0OI is knowledge. As an
example, since it has been a hobby
of mine for many years, I have
0OI about the activity of sailing,
which, given a lake and a boat, is
easily verified.

1st Order Ignorance (1OI)—
Lack of Knowledge. I have 1OI
when I don’t know something and
can readily identify that fact. 1OI
is basic ignorance. Example: I do
not know how to speak the Russ-
ian language—a deficiency I could
readily remedy by taking lessons,
reading books, listening to the
appropriate audiotapes, or moving
to Russia for an extended period
of time.

2nd Order Ignorance (2OI)—
Lack of Awareness. I have 2OI
when I don’t know that I don’t
know something. That is to say,
not only am I ignorant of some-
thing (for instance I have 1OI), I
am unaware of this fact. I don’t
know enough to know that I don’t
know enough. Example: I cannot
give a good example of 2OI (of
course).

3rd Order Ignorance (3OI)—
Lack of Process. I have 3OI when
I don’t know a suitably efficient
way to find out I don’t know that I
don’t know something. This is lack
of process, and it presents me with
a major problem: If I have 3OI, I
don’t know of a way to find out
there are things I don’t know that I
don’t know. Therefore, I can’t
change those things I don’t know
that I don’t know into either things
that I know, or at least things I
know that I don’t know, as a step
toward converting the things I
know that I don’t know into things
I know. For system development,
the “suitably efficient” proviso
must be added, since there is
always a default 3OI process avail-
able: try and build the system.
Whereupon the customer can be
relied on to inform me of all the
things I did not know.

4th Order Ignorance (4OI)—
Meta Ignorance. I have 4OI when
I don’t know about the Five
Orders of Ignorance. I no longer
have this kind of ignorance, and
now, neither, dear reader, do you.

The Five Orders of
Ignorance in System
Development
Each of the Five Orders of Igno-
rance plays a significant role in
building systems:

• 0OI: Since 0OI is knowledge,
this is the correctly functioning
element of the system that I
understood and successfully incor-
porated into the system. When I
have 0OI, I have the answer to
the problem.
• 1OI: These are the known vari-
ables, where the presence of the

variables is known, but not their
values. When I have 1OI, I have
the question. Usually, having a
good question makes it fairly easy
to find the answer.
• 2OI: This is the real problem.
Not only do I not have the
answer I need, I don’t even have
the question. This is where we
start many projects. When we
begin projects, we know, from
experience there are many things
we have to learn. We just don’t
know what they are. 2OI
explains, for instance, most varia-
tion in project estimates and the
concept of “contingency” (to
allow for things we haven’t
thought of). 2OI also explains the
famous “90% complete program
syndrome,” where a programmer
asserts with conviction that he or
she is 90% complete, sometimes
for months on end. The program-
mer is not “lying,” but certainly is
not correct. Basically the pro-
grammer doesn’t know how com-
plete he or she is. Why? Because
of 2OI, the programmer doesn’t
know what the programmer does-
n’t know. 2OI also accounts for
rework cycles, late-phase
“gotchas,” and what project man-
ager and author Fred Brooks calls
“second system effect.”
• 3OI: Coupled with 2OI, 3OI
presents a real danger (I don’t have
a way to resolve my lack of knowl-
edge during the available time I
have). Personally, I think all soft-
ware development methodologies
are actually 3OI processes, whose
main job is to show the areas of
the product or process, or where I
lack knowledge. There is an
important thing to note—the
answer I am looking for cannot be

in the methodology. With few
exceptions, methodology simply
gives me a syntax in which to
frame the question and a discipline
for identifying those areas where I
might have 2OI. But it can’t know
what I’m trying to do. The answer
must come from elsewhere.
• 4OI: This is probably not too
much of an issue, though I’ve
found thinking of process this way
helps. We’ve found ways to com-
pensate for our orders of igno-
rance, like the use of contingency
for 2OI. I added 4OI to this
model mostly because knowledge
is inherently recursive.

The critical levels seem to be 2OI
and 3OI. I view most of our work
to be the reduction of 2OI, and
the development and use of all
software and systems methodolo-
gies as being 3OI processes. The
job of a 3OI process is to illumi-
nate our 2OI. The application of

3OI to 2OI generates either 1OI
or more rarely 0OI—the process
either gives us the answer (0OI) or
more commonly, it gives us the
question (1OI). This is one of the
major purposes of process and is
the major role of methodologies
and modeling.

The critical point here is that
the application of 3OI processes
(methodologies and process) does
not give the answer; it gives me
the question. As a business model,
we have been looking to these
tools for the wrong thing. We
expect them to provide us with
answers, and that’s not what they
do. It is very frustrating to expect
an answer and instead get a ques-
tion; to use a methodology to
reduce the amount of work, and
apparently increase it; or to consci-
entiously apply a process only to
have it tell us just how little we
actually know. But that is the real-
ity of the software development

business. A functioning system is
the by-product of the activity of
finding things out. The working
system is the proof that I have the
knowledge. Looked at pragmati-
cally, the goal is to resolve our
orders of ignorance to 0OI. We
spend most of our energies acquir-
ing knowledge. Since finding the
answer to 1OI is straightforward,
we must be spending most of our
production energy on 2OI, and
most of our process energy on
3OI. We can use the Orders of
Ignorance to categorize what we
know, and what we don’t know, to
estimate the likelihood of what we
don’t know we don’t know, and to
assign to process and methodology
their true place in the order of
things.

Phil Armour (armour@corvusintl.com) is a
vice president and senior consultant at Corvus
International Inc, Deer Park, IL.

© 2000 ACM 0002-0782/00/1000 $5.00

c

20 October 2000/Vol. 43, No. 10 COMMUNICATIONS OF THE ACM

The Business of Software

Coming Next Month in the
November Issue of

Communications
A special section on the latest advances in

ultra-high-density data storage.

We will also include an array of articles and columns that address
such topics as the Internet and the future of financial markets, the

role of paper in the digital age, online shopping behavior, the
implications for virtual organizations, and politics and technology in

this month of election fever.

